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We consider a Josephson junction with an arbitrary transmission coefficient D between a singlet and a triplet
superconductor with the latter order parameter characterized by a d vector of the form �kxŷ−kyx̂�. Various
quantities such as the tunneling current, spin accumulation, and spin current are calculated via the quasiclas-
sical Green’s functions. We also present a symmetry argument on the existence of these quantities and their
dependencies on the phase difference across the junction. A physical picture is also given in terms of the
Andreev states near the junction.
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I. INTRODUCTION

Recently, there has been much interest in manipulating the
spin degree of freedom of electrons in condensed-matter sys-
tems. Phenomena such as spin current, spin-Hall effect, spin
accumulation, and magnetoelectric effects have received a
lot of attention.1 These phenomena have been discussed in a
variety of systems, including metals, semiconductors, and
even insulators. In this paper, we discuss the spin current and
spin accumulation near a Josephson junction. We shall, in
particular, consider a junction between an s-wave supercon-
ductor and a pure-triplet superconductor with the latter in the
state where the “d vector,” specifying the spin structure of
the Cooper pairs, is given by d̂=kxŷ−kyx̂.

We are interested in this kxŷ−kyx̂ state for a number of
reasons. This state corresponds to the one-dimensional rep-
resentation A2u in a crystal with tetragonal D4h symmetry2

and hence is one of the simplest example of a triplet state.
This state is also believed to be a limiting case for the order
parameter of the noncentrosymmetric superconductor3

CePtxPd3−xSi. There, due to the absence of inversion symme-
try in the normal state, the order parameter is believed to be
a mixture of the s-wave and the p-wave A2u order param-
eters. �The state kxŷ−kyx̂ is the limiting case �perhaps for
small Pd concentration 3−x� where the s-wave admixture is
small.� Similar mixing of superconducting order parameter
of different parity is also expected in compounds such as
CeRhSi3 �Ref. 4� and in superconductivity found at oxide
interface.5 Spin current generated near the surface of this
superconducting state with vacuum have been discussed re-
cently by two groups,6,7 with and without the mixing of the
s-wave order parameter due to the absence of inversion
symmetry.8

We generalized these considerations to the case where this
superconductor is in contact with an s-wave superconductor
in the form of a Josephson junction with arbitrary transmis-
sion coefficient D, but for simplicity we shall not include any
broken-inversion-symmetry effects in the normal state; hence
the bulk superconductors are assumed to be pure singlet and
pure triplet, respectively. Clearly, in the infinitely high bar-
rier limit, our results would just be a special case of Refs. 6
and 7.

For general transmission, however, one expects a proxim-
ity effect so that near the interface, the system acquires prop-

erties of a superconductor with mixed singlet and triplet or-
der parameters similar to the case which arises in
noncentrosymmetric superconductors,3–5 even though our
bulk superconductors are each purely singlet and triplet. Ef-
fects that are normally not allowed can now appear due to
the lowering of symmetries, similar to the electro-magneto
effects discussed recently for bulk noncentrosymmetric
superconductors.9 There, in particular, a supercurrent can
generate a spin polarization in a perpendicular direction.
Here, we shall investigate how the spin current �and the spin
accumulation� depends on �and hence can be manipulated
by� the phase difference between these two superconductors.

Our investigation is interesting in another point of view.
The state kxŷ−kyx̂ has two counterpropagating edge states of
opposite spins near a surface �see below�, in direct analogy
with the quantum spin-Hall state often discussed in the cur-
rent literature.10,11 The investigation here is analogous to
considering an interface between an ordinary “insulator” �our
s-wave superconductor� and a “quantum spin-Hall insulator”
�our kxŷ−kyx̂ superconductor�. Discussions on this and other
related triplet superconductors from this point of view can
also be found in Refs. 12 and 13.

A recent paper14 also studies the spin accumulation near a
Josephson junction between a pure-singlet and pure-triplet
superconductor. In that paper, only the very special p-wave

state, where d̂ is independent of the momentum direction k̂,
was considered. Spin accumulation was shown to exist near

the junction with the spin direction along d̂. The authors
suggested the detection of this spin accumulation as a
method of identifying triplet superconductors. However, the

constant d̂ vector is a very special case. A general triplet

superconductor is expected to have k̂-dependent d vectors.2

For these more general cases, it is then unclear if spin accu-
mulation would exist and in which direction the net spin lies.
We would like to provide a general consideration using this
�kxŷ−kyx̂� state as an illustrative example.

Our paper is organized as follows. We begin with a sym-
metry argument in Sec. II. We then present our calculations
with the quasiclassical method in Sec. III. The subsections
provides our results, first for the special cases of perfect and
small transmissions, then the more general case with arbi-
trary D. We summarize in Sec. IV. We employ a generaliza-
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tion of the “exploding and decaying trick,” which we explain
in the Appendix.

II. JUNCTION GEOMETRY AND SYMMETRY
CONSIDERATIONS

We shall then consider a Josephson junction between an
s-wave superconductor and a purely triplet superconductor

with d̂=kxŷ−kyx̂. For simplicity we shall consider the two-
dimensional case or, equivalently, the three-dimensional case
but dispersionless in kz. A schematic view of the junction is
shown in Fig. 1. We shall show that symmetry argument
forbids the existence of certain quantities and, in the case
where a quantity is allowed, its dependence on the phase
difference is constrained. We search for symmetry operations
under which the junction would map back to itself. Caution
has to be taken to account for possible changes in the phase
of the order parameters under these operations. These con-
siderations are along the same line, as those applied earlier
by one of us,15,16 to the Josephson current across a junction.

The s-wave �triplet� superconductor occupies x� �� �0.
The order parameter �� is a 2�2 matrix in spin space. We

have, for x�0, �� =�s�i�y� whereas for x�0, �� �k̂�
=�pi�d��k̂� ·�� ��y, where d��k̂�= k̂xŷ− k̂yx̂ specifies the triplet
structure of the pairs. We shall, for simplicity, ignore the
anisotropy of the magnitude of the superconducting gaps. In

this case, �s and �p are independent of k̂.
First we consider the time-reversal transformation � un-

der which the supercurrent and spin accumulation are odd
while the spin current is even. The annihilation operators
transform as �ak�,↑�

−1=a−k�,↓ and �ak�,↓�
−1=−a−k�,↑. Using

the fact that �� transforms as the corresponding anomalous
average, simple algebra then shows that �s→�s

� and �p

→�p
� with d̂ unchanged �using d̂ is real�. Hence the phase

difference 	 changes sign. It follows that the supercurrent
Jj�	�=−Jj�−	�, spin accumulation Si�	�=−Si�−	�, and spin

current Jj
i�	�=Jj

i�−	� for polarization and flow along i and j,
respectively.

Under a reflection in the x-z plane, the order parameter

d̂=kxŷ−kyx̂ transforms according to �kx ,ky ,kz�→ �kx ,
−ky ,kz� and �x̂ , ŷ , ẑ�→ �−x̂ , ŷ ,−ẑ�, respectively. Hence both
superconductors are invariant and the phase difference 	 is
also unchanged. The only nonvanishing currents, spins, and
spin currents allowed are thus Jx,z, Sy, Jx,z

y , and Jy
x,z. Since the

dispersion in z is not considered, Jz and Jz
y will not be men-

tioned hereafter. We can also consider a reflection in the x-y
plane under which �kx ,ky ,kz�→ �kx ,ky ,−kz� and �x̂ , ŷ , ẑ�→
�−x̂ ,−ŷ , ẑ�. The resulting order parameter �s→�s but �p
→�pei
, hence the phase difference 	→	+
. We then have

Jx�	� = Jx�	 + 
� ,

Sy�	� = − Sy�	 + 
� ,

Jx
y�	� = − Jx

y�	 + 
� ,

Jy
x�	� = − Jy

x�	 + 
� ,

Jy
z�	� = Jy

z�	 + 
� . �1�

Other symmetry operations �such as 
 rotation about x̂� just
produce relations that can be found by combinations of those
listed above. We note, in particular, that the spin accumula-
tion lies entirely along the y direction. In the limit of zero
transmission, all quantities are independent of 	. In this case,
all spin accumulations must vanish and the only finite spin
current is Jy

z. These results hold even when more general
components of the A2u order parameter �e.g., kxky�kxx̂−kyŷ�
in Ref. 2� are included. As we shall see later, only Jx, Sy, and
Jy

z are found to be finite in our calculations.

III. QUASICLASSICAL GREEN’S FUNCTION

We now present our calculations and the quasiclassical
method. At positions other than the interface, the quasiclas-
sical energy-integrated Green’s function ĝ, a function of mo-

mentum direction k̂, Matsubara frequency �n, and position r�,
obeys17

�i�n�3 − �̂, ĝ� + iv� f�k̂� · �� ĝ = 0, �2�

with the normalization condition

ĝ2 = − 
21̂. �3�

Here v� f�k̂� is the Fermi velocity. The boundary condition at

x=0 will be stated below. �̂�k̂� specifies the off-diagonal

pairing field. �̂= � 0 ��
−�� † 0 � where �� is the 2�2 order-parameter

matrix in spin space. With �+�� 0 1
0 0 � and �−�� 0 0

1 0 � in

particle-hole space, we then have �̂=�s�i�y��++�s
��i�y��−

for x�0 and �̂=�pi�d��k̂� ·�� ��y�++�p
�i�y�d��k̂� ·�� ��− for x

�0. In order to have tractable analytic solutions for ĝ, we
shall also ignore the self-consistent gap equation and hence
the spatial dependence of �s and �p. In order to explain the

k

k

φ

eiχ
s|∆

s
| eiχ

p|∆
p
|

y

x

FIG. 1. A schematic view of the singlet-triplet junction. The
triplet superconductor, with an order parameter of magnitude ��p�
and phase 	p, occupies the right �x�0� while the singlet one,
whose respective values denoted by ��s� and 	s, occupies the left
�x�0�. The quasiclassical path is denoted by the direction of qua-

siparticle momentum k̂. The angle  is defined with respect to the x

axis. Incoming and outgoing paths labeled by k̂� and k̂, respectively,
are used for interface with nonperfect transmission.
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physics without unnecessary complications, we shall also as-
sume for simplicity that each of the superconductor has a
single Fermi surface with the Fermi velocity magnitudes of

the two superconductors identical and independent of k̂.
Moreover, we shall assume that the barrier is smooth so that
momentum parallel to the junction is a good quantum num-
ber.

A. Perfect transmission

In this case, the boundary condition at x=0 is simply that

ĝ is continuous. ĝ�k̂ ,�n ,0� is given by �see the Appendix�

ĝ�k̂,�n,0� = − i
�â, b̂�−1�â, b̂� , �4�

where �,� and �,� denote commutators and anticommutators

and â and b̂ the appropriate exponentially decaying and in-
creasing solutions along the quasiclassical path.

For kx�0, we need â= âp and b̂= b̂s in Eq. �4�. We find

ĝ�k̂,�n,0� = c3�k̂,�n��3 + c3��k̂,�n�	d̂�k̂� · �� 0

0 − �yd̂�k̂� · �� �y



+ �o.d.� , �5�

where �o.d.� denotes off-diagonal terms in particle-hole
space that we would not need,

c3�k̂,�n� = − 

��p�2��s�2sin 	 cos 	 + i�n��s�p + �n

2���p + �s�
��s�p + �n

2�2 − ��p�2��s�2cos2 	
,

�6�

c3��k̂,�n� = 
��p���s�
��s�p + �n

2�sin 	 + i�n��p + �s�cos 	

��s�p + �n
2�2 − ��p�2��s�2cos2 	

,

�7�

where 	�	p−	s is the phase difference. �s���n
2+ ��s�2�1/2

and �p���n
2+ ��p�2�1/2. The result for c3 was also given in

Ref. 15. For kx�0, we need â= b̂p and b̂= âs in Eq. �4�.
Alternatively, we can also use the symmetry �Eq. �C.10c� in

Ref. 17� ĝ�−k̂ ,−�n�=�2ĝtr�k̂ ,�n��2, where tr denotes the

transpose. ĝ�k̂ ,�n� is still of the form in Eq. �5�, with

c3�−k̂ ,−�n�=−c3�k̂ ,�n� and c3��−k̂ ,−�n�=−c3��k̂ ,�n�. Note that

we have defined the c3 and c3� coefficients with k̂-dependent

d̂ vector in Eq. �5� and d̂�−k̂�=−d̂�k̂�.
The number current density along x can in general be

expressed as

Jx =
1

2
Nfv f� d

2

�cos �T�

n

Tr��3ĝ�k̂,�n�� , �8�

where  is the angle of k̂ with respect to x̂ and Nf is the
density of states per unit area for a single spin species. The
symbol Tr represents taking a full trace in both the spin and
particle-hole spaces. Only the c3 component in Eq. �6� con-
tributes to Jx. The spin density in the i direction at x=0 can
be expressed as18

Si =
�

4
Nf� d

2

T�

n

Tr��̂iĝ�k̂,�n�� . �9�

Here we define the symbols �̂i by �̂x��x, �̂y =�y�3, and
�̂z��z. So here only Sy is finite and is associated with c3� in
Eq. �7�. The spin current densities, with superscript �sub-
script� denoting the spin �flow� direction at x=0 is18

Jj
i =

�

4
Nfv f� d

2

�k̂j�T�

n

Tr��3�̂iĝ�k̂,�n�� . �10�

Note that the three components of �̂i�3 are �x�3, �y, and
�z�3. It follows that all the spin currents vanish since ĝ of Eq.
�5� does not contain any �̂i�3 components. Physically, the

Andreev equation for each k̂ is decoupled from other paths
and hence can be block diagonalized using quantization axis

along d̂�k̂�. Along this axis, both the singlet and triplet super-
conductors consist of only ↑↓ pairs. These Cooper pairs do
not have any net spins, and they cannot contribute to any
dissipationless spin current. �See also the discussions near
the end of Sec. III C.�

Next we present explicit results for the case of equal gaps
on both sides, i.e., ��s�= ��p�= ���. Here the interface bound
states, which correspond to the poles of ĝ in Eq. �5�, are
essential for the quantities in Eqs. �8� and �9�. It can be
shown that for the right moving path �kx�0�, the bound

states of spin parallel and antiparallel with d̂�k̂� are given by
Eb,↑=−���cos� 	

2 �sgn�sin� 	
2 �� and Eb,↓= ���sin� 	

2 �sgn�cos� 	
2 ��,

respectively. For the left-moving path �kx�0�, the bound-
state energies are Eb,↑=−���sin� 	

2 �sgn�cos� 	
2 �� and Eb,↓

= ���cos� 	
2 �sgn�sin� 	

2 ��. Notice that we adopt a common spin-
quantization axis for both right- and left-moving paths �cap-
tion of Fig. 2� to facilitate the following discussions. The
bound-state spectra are plotted as a function of phase differ-
ence 	 in Fig. 2. It can be seen that for a given path, the two
branches of opposite spin projections are identical except
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b
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FIG. 2. �Color online� The interface bound states associated
with the kx�0 and kx�0 paths in the perfect transmission case. To
facilitate the discussions for spin accumulation and spin current, ↑
spin means parallel to d̂�k̂� associated with the right-moving path,

i.e., kx�0 but antiparallel to d̂�k̂� if kx�0.
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separated by 
, which reflects the invariance of triplet order

parameter under 	p→	p+
 and d̂→−d̂.
The analytical results for Jx is obtained using Eq. �8�,

which gives

Jx = −
2���
e2RN




4
cos�	/2�tanh

���sin�	/2�
2T

− sin�	/2�tanh
���cos�	/2�

2T
� , �11�

where RN denotes the corresponding resistance in the normal
state. Equation �11� coincides with the previous results in
Ref. 15. Jx is plotted in Fig. 3 and the present case corre-
sponds to the line denoted by D=1. Jx can be understood by
summing over contributions

�Eb

��	 from occupied bound states.
Notice that a current jump occurs whenever 	 is a multiple of

. When 	 is slightly larger than 0, the state labeled by the
square in the left panel and the state labeled by the diamond
in the right are occupied. Only the latter bound state with a
negative slope contributes to Jx. When 	 is slightly less than
0, on the other hand, the state labeled by the triangle in the
left panel is occupied and contributes a positive current.

Moreover, the splitting between bound states actually con-
tributes to a finite spin accumulation near the interface along
some direction. Consider 0�	�
 and zero temperature.
Referring to Fig. 2, for the right- and left-moving paths, the
states with spin parallel to the quantization axis defined in
the caption are both populated. As the parameter  varies
between �
 /2, this quantization axis varies. A net spin is
generated along the positive y axis, whereas the x component
adds to zero. Analytically, the spin accumulation can be ob-
tained from Eq. �9�, which gives

Sy = �Nf���cos�	/2�tanh
���sin�	/2�

2T

+ sin�	/2�tanh
���cos�	/2�

2T
� . �12�

As a function of 	, the spin accumulation Sy for both sides of
the interface is plotted in Fig. 4. The present case corre-
sponds to the line with D=1. In addition, Sy is also continu-
ous across the interface for perfect transmission. We note,
however, that if the magnitude of the gaps of the two super-
conductors are unequal, there can also be contributions due
to continuum states, as in the case of supercurrent between
two unequal-gap s-wave superconductors.19 Since the
Green’s function decays as e−2��x�/vf �cos �, Sy decays in a dis-
tance of the order of coherence length �v f / ��� away from the
interface. The total spin accumulation is of the order �2Nfv f
per unit length along the junction.

B. No transmission

In this case all particles are reflected. The behavior of the
s-wave superconductor for x�0 is trivial, and we shall thus
concentrate only on the triplet superconductor on the right.

Let us denote the incoming wave vectors by k̂� and the re-

flected outgoing wave vectors by k̂, with k̂x�0 and k̂�x�0,
see Fig. 1. We label the positions along the quasiparticle path

consisting of each pairs of k̂ and k̂� by u, with u�0 �u�0�
labels the part for k̂�k̂��. ĝ�u� is continuous at u=0 and can be

obtained from Eq. �4� with â→ âp�k̂� and b̂→ b̂p�k̂��. Since

d̂�k̂�� d̂�k̂��, we shall introduce the quantities C� d̂�k̂� · d̂�k̂��
and D� � d̂�k̂�� d̂�k̂��. Note that C2+ �D� �2=1. The part of ĝ�0�
which is diagonal in particle-hole space and even in �n is
found to be



��p�2

�2�n
2 + ��p�2�1 + C��	�D� · �� � 0

0 �y�D� · �� ��y


 .

For our state, C=−cos 2 and D� = ẑ sin 2. It follows that

there are no currents Jj. For a given pair of wave vectors k̂

and k�̂ , there is in general a finite spin along D� � ẑ. However,
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FIG. 3. �Color online� The calculated supercurrent Jx for various
transmission coefficients D. The gap on both sides are set to equal
to ��� and T= ��� /100.

0 0.5 1
−1

−0.5

0

0.5

1
X=0

+

0 0.5 1
−1

−0.5

0

0.5

1

Phase difference (χ/2π)

S
p

in
ac

cu
m

u
la

ti
o

n
2π

S
y/h

N
f|∆

|

x=0
−

D=1
D=0.9
D=0.7
D=0.5
D=0.3

FIG. 4. �Color online� The spin accumulation Sy at x=0� on the
two sides of the interface for various transmission coefficients D
with T= ��� /100.
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the contribution from the pairs of wave vectors in opposite
directions sum to zero �that is, between the pair with outgo-

ing k̂ and incoming wave vector being −k̂, or alternatively,
��. Therefore Sz=0 and there is no spin accumulation in
any direction, which can also be seen by noting that ĝ does
not contain any �̂i component. The only finite spin current is
Jy

z associated with the �z�3 component and its value at x=0 is
given by

Jy
z = �Nfv f�

− 

2

��


2

d



�sin �T�

n



��p�2Dz

�2�n
2 + ��p�2�1 + C��

,

�13�

where Dz is the z component of D� . Since ĝ�k̂ ,�n ,0�
= ĝ�k̂� ,�n ,0�, the angular integral in Eq. �13� has been re-
placed by twice the contribution due to outgoing wave vec-

tors. The factor sin  is due to k̂y = k̂�y. At zero temperature,

the spin current density Jy
z =�Nfv f

��p�
2 at the interface and

decays into the bulk within a coherence length. The total spin
current is of the order �2Nfv f

2.
The physical picture of the spin current is similar to that

of the edge current in the so-called chiral superconductors12

and has been discussed also in, e.g., Ref. 6. Our triplet state
consists of ↑↑ pairs and ↓↓ pairs only, with wave functions,
respectively, given by �−dx+ idy�→ i�kx− iky� and �dx+ idy�
→ i�kx+ iky�. Due to the phase difference between the order
parameters of the incoming and outgoing momenta, each
spin component has a bound state �for a given pair of
incident- and reflected-wave wave vectors� but opposite en-
ergies, �= � ��p�sin  for spin up �down�, respectively, near
the surface. Thus the up �down� spins preferentially occupy
the states with positive �negative� y momentum contributing
to a net spin current Jy

z. In this picture, it also follows that Jy
x

vanishes for D=0.

C. General transmission

In this subsection, we consider a general interface be-
tween our singlet and triplet superconductor of �angular and

spin independent� transmission coefficient D. We denote the
incoming �outgoing� wave vector on the right by k�̂ and k̂ and
conversely for the left, see Fig. 1. The corresponding Green’s
functions ĝ�k�̂ ,x=0�� and ĝ�k̂ ,x=0�� on the two sides of the
spin-inactive interface are related to each other by a set of
boundary conditions given in Ref. 20. �See also the Appen-
dix.� It is more convenient to express them in terms of the
difference ĝd= ĝ�k̂ ,x=0+�− ĝ�k̂� ,x=0+�= ĝ�k̂ ,x=0−�− ĝ�k̂� ,x
=0−�, which is continuous across the interface and the sums
ŝr�l�= ĝ�k̂ ,x=0+�−��+ ĝ�k̂� ,x=0+�−��. It can be shown that the
supercurrent Jx in Eq. �8� and spin currents Jx

i in Eq. �10�
across the interface can be expressed solely in terms of the
difference ĝd. Note that , which specifies the angle for k̂, is
now restricted within �
 /2. Moreover, the �3 and �3�̂i com-
ponents of ĝd are associated with Jx and Jx

i , respectively.
Below, we consider the equal gap case for simplicity in
which ĝd can be worked out analytically via Eq. �A16�. The
�3 component contributing to Jx is given by

�ĝd�k̂,�n���3
=

�− 
�D2���4sin�2	�

4�2�n
2 + D2���4sin2 	 + 4�1 − D��2���2sin2 

.

�14�

By numerically performing the sum over the Matsubara fre-
quencies, Jx for arbitrary D is plotted in Fig. 3. Note that the
current is odd and is periodic in the phase difference 	 with
period 
, as noted also in Ref. 15. �See also Sec. II.� Second,
we find that none of the �3�̂i components appear in ĝd and
hence all the spin currents Jx

i across the junction are zero. We
note, however, that the �spatial� symmetry argument in Sec.
II allows a nonzero Jx

y, as in Eq. �1�. Therefore, the vanishing
of Jx

y results from other symmetries, which we shall discuss
near the end of this section.

At the right side of the interface, the spin accumulation Si

and the spin current Jy
i flowing parallel to the interface can

all be expressed in terms of ŝr solely. Here the �̂i components
in ŝr are needed for Si and the �3�̂i ones are for Jy

i as required
in Eqs. �9� and �10�. By using Eq. �A17�, the �̂i components
are listed below,

�ŝr�k̂,�n���̂i = 4
D���2
− i sin  cos 	��n�x + ��1 − D

2 ��2 + D
2 �n

2�cos  sin 	�y�3

4�2�n
2 + D2���4sin2 	 + 4�1 − D��2���2sin2 

. �15�

The spin accumulation Sx is identically zero because the co-
efficient in �x is odd in �n and the factor sin  also gives zero
after the angular integration. This result is consistent with
our symmetry argument in Sec. II. The only finite spin accu-
mulation is Sy which is shown in Fig. 4 due to the �y�3

component in Eq. �15�. Note that Sy�	� obeys the symmetry
in Sec. II and has period 2
. As for the spin current, the only
nonvanishing component of �3�̂i is given by

�ŝr�k̂,�n���3�̂i =
4
���2�1 − D��2 sin�2��z�3

4�2�n
2 + D2���4sin2 	 + 4�1 − D��2���2sin2 

.

�16�

For D=0, Jy
z does not depend on 	. For D�1, the phase

dependence comes from the sin2	 term in the denominator.
The Jy

z versus the phase difference 	 is plotted in Fig. 5 for
various D. This spin current is even in 	 and is periodic with

SPIN CURRENT AND SPIN ACCUMULATION NEAR A… PHYSICAL REVIEW B 80, 024504 �2009�

024504-5



period 
. �see Sec. II�. We note that the vanishing of �3�̂x

components leads to zero Jy
x which was not anticipated by

our symmetry argument in Sec. II.
At the left side of the interface, Si and Jy

i can be calculated
via ŝl in Eq. �A18�. The �̂i components are identical to those
in ŝr except that � and �n are interchanged in the square
bracket �…� of Eq. �15� associated with �y�3 component.
The numerical results for Sy�x=0−� are also shown in Fig. 4.
It can be seen that Sy is continuous across the interface only
for D=1. In addition, all the terms associated with the spin
current Jy

i , including the �z�3 component, vanish for all D.
Consequently, all the spin currents vanish on the left side.

The vanishing of Jj
i for x�0 and Jx

i for all x is a result of
spin conservation. Observing that �x�3, �y, and �z�3 com-

mute with �3 and �̂s, we see that by multiplying Eq. �2� by
these matrices and then taking the trace, v� f ·��Tr��̂i�3ĝ��
=0, that is, the spin current is constant along any quasiclas-
sical path at any point inside the singlet superconductor.
Since the spin current vanishes at x→−�, it follows that the
spin current on each quasiclassical path vanishes for x�0.
Hence Jj

i =0 for all i and j if x�0. Note that this vanishing of
the spin current does not rely on angular integration. Since
Jx

i =0 for x=0− and the spin current is continuous across a
spin-inactive interface �ĝd is continuous�, Jx

i =0 also for x
=0+. At any point x�0, the Green’s function is a linear
combination of its value at x=0+ and x→� where Jx

i also
vanishes. Hence Jx

i =0 also for all x�0. The vanishing of Jj
i

at x=0− and Jx
i at x=0 can also be easily proven using Eqs.

�A16� and �A18� using the fact that �̂i�3 commutes with ĝaux
l

and Tr��̂i�3ĝaux
l �=0.

As mentioned, the symmetry allowed Jy
x is found to van-

ish in our calculation. We have checked that the vanishing of
Jy

x is also true in the case of ��s�� ��p�. We do not have a
simple physical explanation of this result yet. Mathemati-
cally, this follows from the fact that absence of the �x�3 term
for ĝ on the left of the interface �due to spin conservation� is
carried over to ĝ on the right. Vorontsov et al.6 also consid-
ered the interface between vacuum and a noncentrosymmet-
ric superconductor with finite spin-orbital Rashba energy,
which lifts the energy degeneracy between quasiparticles at
the same momentum but opposite spin projections. They
showed that this can lead to some finite and oscillating Jy

x

and Jx
y. We expect that this may also happen in our junction.

IV. DISCUSSIONS AND CONCLUSIONS

We have considered the spin accumulation and spin cur-
rent near a Josephson junction between a singlet and triplet
superconductor. We showed that symmetry arguments �Sec.
II� place strong restrictions on the existence of above physi-
cal quantities and their dependence on phase difference 	
across the Josephson junction. Comparing with the pervious
work,14 this method also applies for any triplet pairing wave
function and provides a more general way of determining the
direction in which the spin lies. Conversely, the direction and
phase dependence of the spin accumulation actually inform
us about which symmetry is broken by the junction and
hence the symmetry of the triplet order parameter itself.
Moreover, the quasiclassical Green’s function technique is
employed to quantitatively investigate the predicted super-
current Jx, spin accumulation Sy, and spin current Jy

x,z. Jy
x

turns out to be zero for our junction, though it is symmetry
allowed. For transmission coefficient 0�D�1 in our calcu-
lation, the spin accumulation Sy and spin current Jy

z coexist
within a coherence length at the triplet side, a feature which
does not appear in the previous studies.6,14

In conclusion, we have calculated the spin accumulation
and spin current near the interface of a singlet-triplet junction

with the triplet order parameter specified by d̂=kxŷ−kyx̂. The
method of quasiclassical Green’s functions as well as the
symmetry arguments can be generalized to other junction
with arbitrary pairing symmetries. These spin accumulation
and dissipationless spin currents depend on the phase differ-
ence and hence can be controlled by the charge current pass-
ing through the junction.
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APPENDIX: EXPLODING AND DECAYING TRICK

In this appendix, we explain the exploding and decaying
trick. This trick has been used for pure s-wave21 and pure
p-wave pairing �e.g., Ref. 22�. From these references, one
can actually deduce that the method can be generalized to
mixed singlet and triplet pairs, so that results such as Eq. �4�
can still be used. However, we would like to provide our
alternate derivation below to show that it is indeed applicable
for mixed pairing and, moreover, we believe that our presen-
tation may be more transparent to some readers than those in
the literature. We also note that this method is not limited to
spatial independent gaps, though we shall discuss only the
�piecewise� constant gaps case to simplify our presentation.
Furthermore, this method can be easily implemented numeri-
cally, as has been performed in, e.g., Refs. 20–22, etc.

We begin by reviewing the first trick for pure s-wave
superconductor. Writing u as the parameter along a quasi-
classical path, Eq. �2� can be written as
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FIG. 5. �Color online� The spin current Jy
z at x=0+. T= ��� /100

here. On the singlet side of interface, the spin current is zero for all
D.
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�i�n�3 − �s�i�y��+ − �s
��i�y��−, ĝ�u�� + iv f�uĝ�u� = 0,

�A1�

where we have suppressed the k̂ and �n dependence of ĝ. A
“constant” solution �also satisfying Eq. �3��, which is also the
ĝ for a bulk superconductor, is given by

ĝs,bulk = − 

i�n�3 − �s�i�y��+ − �s

��i�y��−

��n
2 + ��s�2�1/2 �A2�

and is thus a linear combination of �3, �y�+, and �y�− matri-
ces only. It is also possible to find other solutions to Eq. �2�
�without satisfying Eq. �3�� which are a linear combination
of these three matrices only. They are, with �s���n

2

+ ��s�2�1/2,

âs�u� = e−2�su/vf�− i��s�2�3 − �s��s + �n�i�y�+

+ �s
���s − �n�i�y�−� , �A3�

b̂s�u� = e+2�su/vf�+ i��s�2�3 − �s��s − �n�i�y�+

+ �s
���s + �n�i�y�−� , �A4�

which will be called the decaying and exploding solutions

“in the same block.”22 We note that they satisfy â2=0, b̂2

=0, and �ĝs,bulk , â�= �ĝs,bulk , b̂�=0. In fact, ĝs,bulk can be writ-

ten as ĝ=−i
�P̂1− P̂2� with P̂1= âb̂ / �â , b̂� and P̂2

= b̂â / �â , b̂� being projection operators with P̂1+ P̂2=1,

P̂1P̂2= P̂2P̂1=0, and âP̂1=0, âP̂2= â, b̂P̂1= b̂, and b̂P̂2=0
�see, e.g., Ref. 20�.

Similar results apply to the pure-triplet superconductor.
The bulk solution is

ĝp,bulk = − 

i�n�3 − �p�id� · �� �y��+ − �p

��i�yd� · �� ��−

��n
2 + ��p�2�1/2

�A5�

and is thus a linear combination of �3, �d� ·�� ��y�+, and
�y�d� ·�� ��− matrices only. The other solutions to Eq. �2�
�without satisfying Eq. �3�� which are a linear combination
of these same three matrices are, with �p���n

2+ ��p�2�1/2,

âp�u� = e−2�pu/vf�− i��p�2�3 − �p��p + �n�i�d� · �� ��y�+

+ �p
���p − �n�i�y�d� · �� ��−� , �A6�

b̂p�u� = e+2�pu/vf�+ i��p�2�3 − �p��p − �n�i�d� · �� ��y�+

+ �p
���p + �n�i�y�d� · �� ��−� . �A7�

Let us now consider our junction and begin with the case of

perfect transmission. �̂=�s,p for x� �� �0 and ĝ is continu-
ous at x=0. Let us first consider kx�0 and label a point on
the quasiclassical path as u, with u=0 at the interface �hence

u=x / k̂x�. ĝ must decay to ĝs,bulk �ĝp,bulk� as u→−��+��. We
note, however, that we cannot just try the ansatz ĝ�u�
= ĝp,bulk+cpâp�u� for u�0 and ĝ�u�= ĝs,bulk+csâs�u� for u
�0 for some scalar coefficients cp and cs. This is because the
matrices involved for u� �� �0 are then different, so ĝ being

continuous at u=0 can never be satisfied. To explain more
clearly our idea of solving this problem, let us first consider

the special case d̂= ẑ so that i�d� ·�� ��y =�x. Then ĝp,bulk and âp
above are linear combinations of �3 ,�x��. To find a possible
continuous ĝ at u=0, we must, therefore, include also decay-
ing solutions for u�0, which also involves �y�� �due to the
singlet superconductor on x�0�, and an exponentially in-
creasing solution for u�0 which also involves �x��. One
can find these solutions easily, as done explicitly in Ref. 15.
We can, however, also note that these needed solutions can

be written as ��z�3�âp and ��z�3�b̂s. �Note that ��z�3� com-

mutes with �3, �̂s, and �̂p.� Hence we can try15

ĝ�u� = ĝs,bulk + csb̂s + �s��z�3�b̂s u � 0, �A8�

ĝ�u� = ĝp,bulk + cpâp + �p��z�3�âp u � 0, �A9�

where cs,p and �s,p are scalar coefficients to be determined.
Note that now ĝ for both u� �� �0 consist of �3, �3, �y��,
and �z�� matrices and hence a solution is possible. Note that
Eq. �3� is satisfied. Since ĝ�0� can be expressed as either Eq.
�A8� and �A9�, we can determine the coefficients cs,p and �s,p
using simple algebra, but a simpler procedure is to left-

multiply Eqs. �A8� and �A9� �at u=0� by b̂s�0� and âp�0�,
respectively, to obtain

b̂s�0�ĝ�0� = b̂s�0�ĝs,bulk = − i
b̂s�0� , �A10�

âp�0�ĝ�0� = âp�0�ĝp,bulk = + i
âp�0� . �A11�

Note that the unknown scalar coefficients have all disap-
peared. Further multiplying Eqs. �A10� and �A11�, respec-

tively, by âp�0� and b̂s�0� and adding the two equations, we
thus obtain �hereafter we leave out the argument for simplic-
ity�

ĝ�0� = − i
�âp, b̂s�−1�âp, b̂s� . �A12�

Repeating the above procedure postmultiplication rather than
premultiplication actually shows that we can also reverse the
order of the anticommutator and commutators in Eq. �A12�,
as can also be verified explicitly. Note that �âp , b̂s� is a linear

combination of 1̂ and �̂z�3 only.
For kx�0, u�0��0� corresponds to x� ��0�. Following

again the above procedure and ensuring that the solutions
decay correctly to their respective bulk values at u→ ��
gives us the analogous formula

ĝ�0� = − i
�âs, b̂p�−1�âs, b̂p� . �A13�

Equations �A12� and �A13� are the special examples of Eq.

�4� in the present case. For general d̂�k̂�, to ensure the con-
tinuity of ĝ at x=0, we need matrices �3, �y��, �d� ·�� ��y�+,

and �y�d� ·�� ��−. A matrix that commutes with �3, �̂s, and �̂p
can be seen to be
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	�d� · �� � 0

0 �y�d� · �� ��y


 � �1.

The argument above can be repeated with this matrix replac-
ing �z�3 above.

The above argument actually does not depend on the fact
that �z�3 �or �1 defined above� be common to both sides of
Eqs. �A8� and �A9�. To see this, let us first consider the

singlet superconductor. We note that the matrices 1̂, �y, �x�3,
and �z�3 all commute with �3 and �y��, so they are auto-
matically solutions to Eq. �A1�. Since the product of two
solutions to Eq. �A1� is also a solution, we see that ĝs,bulk,
�yĝs,bulk, �x�3ĝs,bulk, and �z�3ĝs,bulk are also constant solu-
tions. There are also, in fact, four decaying solutions âs, �yâs,
�x�3âs, and �z�3âs and similarly four exponentially increas-
ing solutions. Note that we now have 16 solutions to the 4
�4 matrix equation �A1� and, hence, any solution to Eq.
�A1� can be written in terms of them. The most general ĝ
which decays to ĝs,bulk at u→−� �for kx�0� can be seen to
be

ĝ�u� = ĝs,bulk + csb̂s + �s,1�yb̂s + �s,2�x�3b̂s + �s,3�z�3b̂s,

�A14�

where cs and �s,1−3 are scalar coefficients. Note that no con-
stant solution other than ĝs,bulk can appear on the right-hand

side of Eq. �A14� due to the condition at u→−�. Since 1̂, �y,
�x�3, and �z�3 all commute with �3 and �y��, they commute

with b̂s. Left multiplication of Eq. �A14� with b̂s again yields
Eq. �A10�.

The triplet superconductor on x�0 can be treated simi-

larly. For a given k̂, we have already noted that the matrix

��d��k̂� · �� � 0

0 �y�d��k̂� · �� ��y

� � �1�k̂�

commutes with �3, �d��k̂� ·���y�+, and �y�d��k̂� ·���−. Two

other matrices with this property are �besides 1̂�

	�d�2,3 · �� � 0

0 − �y�d�2,3 · �� ��y


 � �2,3�k̂� ,

where d̂2,3 are the two vectors orthogonal to d̂�k̂�. These four

matrices 1̂ and �1,2,3�k̂� are trivial solutions to Eq. �2� for the
triplet superconductor. Four other constant solutions are the
product between them and ĝp,bulk. Again there are four de-
caying �increasing� solutions obtained by their product with

âp�b̂p�. We again have a total of 16 solutions to Eq. �2� for
the triplet superconductor. The most general solution to ĝ�u�
with ĝ�u�→ ĝp,bulk as u→� �again for kx�0� is

ĝ�u� = ĝp,bulk + cpâp + �p,1�1�k̂�âp + �p,2�2�k̂�âp + �p,3�3�k̂�âp.

�A15�

On noting that �1,2,3�k̂� commute with �3, �d��k̂� ·���y�+ and

�y�d��k̂� ·���− and hence âp, left multiplying Eq. �A15� by âp
again yields Eq. �A11�. The rest of the demonstration of Eq.

�A12� goes through unchanged. Similar argument applies for
kx�0.

For finite transmission D, ĝ is now, in general, discontinu-
ous at x=0 and ĝ for incoming, reflected, and transmitted
paths are all related. A general boundary condition nonlinear
in ĝ was first derived independently by Zaitsev23 and
Kieselmann.24 In Ref. 20, a simplified linearized form of the
boundary condition was provided. The derivation given there
was for singlet superconductors. However, the boundary con-
ditions derived by Refs. 23 and 24 were actually independent
of the assumption on the parities of the superconductors.
This can also be checked by using the formulas derived by
Millis et al.25 for a spin-active interface between two super-
conductors of different parities. By ignoring the spin depen-
dence of the scattering amplitudes in Ref. 25 and eliminating
the “drone amplitudes” there, one can show that the nonlin-
ear boundary condition of Kieselmann24 can be recovered.
This nonlinear boundary condition can then be linearized
using arguments similar to those used in Ref. 20. We express
ĝ in the form Eqs. �A14� and �A15� for each of the quasi-
classical incident, reflected, and transmitted path but with
ĝbulk replaced by ĝaux, the “auxiliary” solution corresponding
to the completely reflecting case20 �that is, for example, ĝaux

r

solves the quasiclassical equation on the quasiclassical path

formed by k̂� and k̂ with the physical order parameter on the

right but with the boundary condition ĝaux
r �k̂�= ĝaux

r �k̂�� at x
=0+�. The decaying and exploding terms can be eliminated
using projection operators20 with arguments similar to those
explained above for the perfect transmission case. Thus the
derivation in Ref. 20 can be carried over to our present situ-
ation. It is most convenient to write the final results in terms

of ŝr,l� ĝ�k̂ ,0��+ ĝ�k̂� ,0�� at x=0� and ĝd� ĝ�k̂ ,0��
− ĝ�k̂� ,0��, where k̂�k̂�� denotes outgoing reflected �incoming

incident� wave vector on the right �r�. k̂�k̂�� is also the incom-

ing �reflected� wave vector on the left �l�. ĝd �denoted by d̂ in
Ref. 20� is continuous across the interface and is given by

ĝd =
iD
2
 �ĝaux

r , ĝaux
l �

1 + D
4
2 �ĝaux

r − ĝaux
l �2 , �A16�

whereas

ŝr =
�2 − D�ĝaux

r + Dĝaux
l

1 + D
4
2 �ĝaux

r − ĝaux
l �2 , �A17�

and

ŝl =
�2 − D�ĝaux

l + Dĝaux
r

1 + D
4
2 �ĝaux

r − ĝaux
l �2 , �A18�

where the subscript “aux” denotes the solution to the D=0
problem. Since ĝaux

r,l commute with the anticommutator
�ĝaux

r , ĝaux
l �, we need not specify the relative order between

the numerator and the denominator in Eqs. �A16�–�A18�.
By some straightforward algebra, the complete quasiclas-

sical Green’s function ĝaux
r for D=0 problem in Sec. III B is

shown to be
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ĝaux
r =

�− i
�
�n

2 + ��p�2sin2 
�p�n�3 +

i

2
��p�2sin�2��z�3

+ �p��p sin �x + �n cos �y��y�+

+ �p
��y��p sin �x − �n cos �y��−� , �A19�

which can be shown to satisfy �ĝaux
r �2=−
2. Together with

the trivial ĝaux
l = −i


�s
��n�3−�s�y�+−�s

��y�−� for the left side,
one can obtain ĝd in the following form:

ĝd = �− i
D�ĈÂ , �A20�

where the matrix Ĉ is the inverse of

Ĉ−1 � �2 − D��s��n
2 + ���p�sin �2� +

D
2

B̂ . �A21�

The matrix B̂ comes from the anticommutator and is given
by

B̂ � �s��n
2 + ���p�sin �2�

�ĝaux
r , ĝaux

l �
�− 
2�

= 2�p�n
2 + i�n��p�2sin�2��z − 2i�n��s���p�cos  sin 	�y

− 2�p��s���p�sin  cos 	�x�3

+ ��p�2sin�2���s
��x�− − �s�x�+� . �A22�

Â is from the following commutator:

Â � �s��n
2 + ���p�sin �2�

�ĝaux
r , ĝaux

l �
�− 
2�

= − 2�n��s���p�cos  cos 	�y�3

− 2i�p��s���p�sin  sin 	�x

− 2��n�p��p sin �x + �n cos �y� + �p�n�s��y�+

− 2�y��n�p
��− �p sin �x + �n cos �y� − �p�n�s

���−.

�A23�

Similarly, the sum can be expressed as

ŝr = 4Ĉ	1 −
D
2

ĝaux

r +
D
2

ĝaux
l ��s��n

2 + ��p�2sin2 � ,

�A24�

and the expression for ŝl is identical to the one above with
interchange of �1− D

2 � and D
2 in the bracket.
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